Result filters

Metadata provider

Language

Resource type

Availability

Active filters:

  • Language: Czech
Loading...
53 record(s) found

Search results

  • Czech image captioning, machine translation, and sentiment analysis (Neural Monkey models)

    This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving three NLP tasks: machine translation, image captioning, and sentiment analysis. The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks. The models are described in the accompanying paper. The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd There are several separate ZIP archives here, each containing one model solving one of the tasks for one language. To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory. Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization). The 'experiment.ini' file, which was used to train the model, is also included. Then there are files containing the model itself, files containing the input and output vocabularies, etc. For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/ For the machine translation, you do not need to tokenize the data, as this is done by the model. For image captioning, you need to: - download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz - clone the git repository with TensorFlow models: https://github.com/tensorflow/models - preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script Feel free to contact the authors of this submission in case you run into problems!
  • Universal Dependencies 2.10 models for UDPipe 2 (2022-07-11)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Lingua::Interset 2.026

    Lingua::Interset is a universal morphosyntactic feature set to which all tagsets of all corpora/languages can be mapped. Version 2.026 covers 37 different tagsets of 21 languages. Limited support of the older drivers for other languages (which are not included in this package but are available for download elsewhere) is also available; these will be fully ported to Interset 2 in future. Interset is implemented as Perl libraries. It is also available via CPAN.
  • KER - Keyword Extractor

    KER is a keyword extractor that was designed for scanned texts in Czech and English. It is based on the standard tf-idf algorithm with the idf tables trained on texts from Wikipedia. To deal with the data sparsity, texts are preprocessed by Morphodita: morphological dictionary and tagger.