Result filters

Metadata provider

Language

  • English

Resource type

Tool task

  • Word embeddings

Availability

Active filters:

  • Language: English
  • Tool task: Word embeddings
Loading...
4 record(s) found

Search results

  • CroSloEngual BERT

    Trilingual BERT (Bidirectional Encoder Representations from Transformers) model, trained on Croatian, Slovenian, and English data. State of the art tool representing words/tokens as contextually dependent word embeddings, used for various NLP classification tasks by finetuning the model end-to-end. CroSloEngual BERT are neural network weights and configuration files in pytorch format (ie. to be used with pytorch library).
  • CroSloEngual BERT 1.1

    Trilingual BERT (Bidirectional Encoder Representations from Transformers) model, trained on Croatian, Slovenian, and English data. State of the art tool representing words/tokens as contextually dependent word embeddings, used for various NLP classification tasks by finetuning the model end-to-end. CroSloEngual BERT are neural network weights and configuration files in pytorch format (i.e. to be used with pytorch library). Changes in version 1.1: fixed vocab.txt file, as previous verson had an error causing very bad results during fine-tuning and/or evaluation.
  • LitLat BERT

    Trilingual BERT-like (Bidirectional Encoder Representations from Transformers) model, trained on Lithuanian, Latvian, and English data. State of the art tool representing words/tokens as contextually dependent word embeddings, used for various NLP classification tasks by fine-tuning the model end-to-end. LitLat BERT are neural network weights and configuration files in pytorch format (i.e. to be used with pytorch library). The corpora used for training the model have 4.07 billion tokens in total, of which 2.32 billion are English, 1.21 billion are Lithuanian and 0.53 billion are Latvian. LitLat BERT is based on XLM-RoBERTa model and comes in two versions, one for usage with transformers library (https://github.com/huggingface/transformers), and one for usage with fairseq library (https://github.com/pytorch/fairseq). More information is in the readme.txt.