Result filters

Metadata provider

Language

Resource type

Project

  • Treebank-Driven Approach to the Study of Spoken Slovenian

Active filters:

  • Tool task: Dependency parsing
  • Project: Treebank-Driven Approach to the Study of Spoken Slovenian
Loading...
7 record(s) found

Search results

  • Trankit model for SST 2.15

    This is a retrained Slovenian model for the Trankit v1.1.1 library for multilingual natural language processing (https://pypi.org/project/trankit/), trained on the SST treebank of spoken Slovenian (UD v2.15, https://github.com/UniversalDependencies/UD_Slovenian-SST/tree/dev) featuring transcriptions of spontaneous speech in various everyday settings. It is able to predict sentence segmentation, tokenization, lemmatization, language-specific morphological annotation (MULTEXT-East morphosyntactic tags), as well as universal part-of-speech tagging, morphological feature prediction, and dependency parses in accordance with the Universal Dependencies annotation scheme (https://universaldependencies.org/). Please note this model has been published for archiving purposes only. For production use, we recommend using the state-of-the art Trankit model available here: http://hdl.handle.net/11356/1965. The latter was trained on both spoken (SST) and written (SSJ) data, and demonstrates a significantly higher performance to the model featured in this submission.
  • Trankit model for SST 2.15 1.1

    This is a retrained Slovenian model for the Trankit v1.1.1 library for multilingual natural language processing (https://pypi.org/project/trankit/), trained on the SST treebank of spoken Slovenian (UD v2.15, https://github.com/UniversalDependencies/UD_Slovenian-SST/tree/r2.15) featuring transcriptions of spontaneous speech in various everyday settings. It is able to predict sentence segmentation, tokenization, lemmatization, language-specific morphological annotation (MULTEXT-East morphosyntactic tags), as well as universal part-of-speech tagging, morphological feature prediction, and dependency parses in accordance with the Universal Dependencies annotation scheme (https://universaldependencies.org/). Please note this model has been published for archiving purposes only. For production use, we recommend using the state-of-the art Trankit model available here: http://hdl.handle.net/11356/1965 (v1.2 or newest). The latter was trained on both spoken (SST) and written (SSJ) data, and demonstrates a significantly higher performance to the model featured in this submission. In comparison with version 1.0, this model was trained on a new train-dev-test split of the SST treebank introduced in release UD v2.15.
  • Dependency tree extraction tool STARK 2.0

    STARK is a python-based command-line tool for extraction of dependency trees from parsed corpora, aimed at corpus-driven linguistic investigations of syntactic and lexical phenomena of various kinds. It takes a treebank in the CONLL-U format as input and returns a list of all relevant dependency trees with frequency information and other useful statistics, such as the strength of association between the nodes of a tree, or its significance in comparison to another treebank. For installation, execution and the description of various user-defined parameter settings, see the official project page at: https://github.com/clarinsi/STARK In comparison with v1, this version introduces several new features and improvements, such as the option to set parameters in the command line, compare treebanks or visualise results online.
  • The Trankit model for linguistic processing of spoken and written Slovenian 1.1

    This is a retrained Slovenian model for the Trankit v1.1.1 library for multilingual natural language processing (https://pypi.org/project/trankit/), trained on the concatenation of the SSJ UD treebank of written Slovenian (featuring fiction, non-fiction, periodicals and Wikipedia texts) and the SST UD treebank of spoken Slovenian (featuring transcriptions of spontaneous speech in various settings). It is able to predict sentence segmentation, tokenization, lemmatization, language-specific morphological annotation (MULTEXT-East morphosyntactic tags), as well as universal part-of-speech tagging, morphological features, and dependency parses in accordance with the Universal Dependencies annotation scheme (https://universaldependencies.org/). In comparison to its counterpart models trained on SSJ (http://hdl.handle.net/11356/1963) or SST datasets only, this model yields a significantly better performance on spoken transcripts and an almost identical state-of-the-art performance on written texts. The model can therefore be recommended as the default, 'universal' Trankit model for processing Slovenian, regardless of the data type. To utilize this model, please follow the instructions provided in our github repository (https://github.com/clarinsi/trankit-train) or refer to the Trankit documentation (https://trankit.readthedocs.io/en/latest/training.html#loading). This ZIP file contains models for both xlm-roberta-large (which delivers better performance but requires more hardware resources) and xlm-roberta-base. In comparison to the previous version, this version was trained on a newer, slightly improved version of the SSJ UD treebank (UD v2.14, https://github.com/UniversalDependencies/UD_Slovenian-SSJ/tree/r2.14) and a substantially extended and improved version of the SST UD treebank (UD v2.15, https://github.com/UniversalDependencies/UD_Slovenian-SST/tree/dev), thus producing significantly better results for spoken data.
  • Dependency tree extraction tool STARK 3.0

    STARK is a highly customizable tool designed for extracting different types of syntactic structures (trees) from parsed corpora (treebanks), aimed at corpus-driven linguistic investigations of syntactic and lexical phenomena of various kinds. It takes a treebank in the CONLL-U format as input and returns a list of all relevant dependency trees with frequency information and other useful statistics, such as the strength of association between the nodes of a tree, or its significance in comparison to another treebank. For installation, execution and the description of various user-defined parameter settings, see the official project page at: https://github.com/clarinsi/STARK. An online demo version of the tool is available at: https://orodja.cjvt.si/stark/. In comparison to v2, this version introduces several new features and improvements, such as the ability to extract very long trees, ignore irrelevant relations, process multi-root treebanks, or handle special operators when querying.
  • Service for querying dependency treebanks Drevesnik 1.1

    Drevesnik (https://orodja.cjvt.si/drevesnik/) is an online service for querying Slovenian corpora parsed with the Universal Dependencies annotation scheme. It features an easy-to-use query language on the one hand and user-friendly graph visualizations on the other. It is based on the open-source dep_search tool (https://github.com/TurkuNLP/dep_search), which was localized and modified so as to also support querying by JOS morphosyntactic tags, random distribution of results, and filtering by sentence length. The source code and the documentation for the search backend and the web user interface are publicly available on the CLARIN.SI GitHub repository https://github.com/clarinsi/drevesnik. This submission corresponds to release 1.1: https://github.com/clarinsi/drevesnik/releases/tag/1.1, which brings improved architecture, documentation and branding in comparison to release 1.0.
  • The Trankit model for linguistic processing of written and spoken Slovenian 1.2

    This is a retrained Slovenian model for the Trankit v1.1.1 library for multilingual natural language processing (https://pypi.org/project/trankit/), trained on the concatenation of the SSJ UD treebank of written Slovenian (featuring fiction, non-fiction, periodicals and Wikipedia texts) and the SST UD treebank of spoken Slovenian (featuring transcriptions of spontaneous speech in various settings). It is able to predict sentence segmentation, tokenization, lemmatization, language-specific morphological annotation (MULTEXT-East morphosyntactic tags), as well as universal part-of-speech tagging, morphological features, and dependency parses in accordance with the Universal Dependencies annotation scheme (https://universaldependencies.org/). In comparison to its counterpart models trained on SSJ (http://hdl.handle.net/11356/1963) or SST datasets only, this model yields a significantly better performance on spoken transcripts and an identical state-of-the-art performance on written texts. The model can therefore be recommended as the default, 'universal' Trankit model for processing Slovenian, regardless of the data type. To utilize this model, please follow the instructions provided in our github repository (https://github.com/clarinsi/trankit-train) or refer to the Trankit documentation (https://trankit.readthedocs.io/en/latest/training.html#loading). This ZIP file contains models for both xlm-roberta-large (which delivers better performance but requires more hardware resources) and xlm-roberta-base. In comparison to the previous version, this version was trained on a newer, slightly improved version of the SSJ UD treebank (UD v2.14, https://github.com/UniversalDependencies/UD_Slovenian-SSJ/tree/r2.14) and a substantially extended and improved version of the SST UD treebank (https://github.com/UniversalDependencies/UD_Slovenian-SST/tree/r2.15), thus producing significantly better results for spoken data. In contrast to the previous versions of this model (1.0, 1.1), the model 1.2 was trained on a new SST train-dev-test split introduced in UD v2.15.