Result filters

Metadata provider

Language

Resource type

Availability

Active filters:

  • Keywords: language model
  • Project: Development of Slovene in a Digital Environment
Loading...
14 record(s) found

Search results

  • The CLASSLA-Stanza model for semantic role labeling of standard Slovenian 2.0

    The model for semantic role labeling of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) extended with the MaCoCu-sl Slovenian web corpus (http://hdl.handle.net/11356/1517). The estimated F1 of the semantic role annotations is ~76.24. The difference to the previous version of the model is that the model was trained using the SUK training corpus and the updated word embeddings.
  • Slovenian RoBERTa contextual embeddings model: SloBERTa 2.0

    The monolingual Slovene RoBERTa (A Robustly Optimized Bidirectional Encoder Representations from Transformers) model is a state-of-the-art model representing words/tokens as contextually dependent word embeddings, used for various NLP tasks. Word embeddings can be extracted for every word occurrence and then used in training a model for an end task, but typically the whole RoBERTa model is fine-tuned end-to-end. SloBERTa model is closely related to French Camembert model https://camembert-model.fr/. The corpora used for training the model have 3.47 billion tokens in total. The subword vocabulary contains 32,000 tokens. The scripts and programs used for data preparation and training the model are available on https://github.com/clarinsi/Slovene-BERT-Tool Compared with the previous version (1.0), this version was trained for further 61 epochs (v1.0 37 epochs, v2.0 98 epochs), for a total of 200,000 iterations/updates. The released model here is a pytorch neural network model, intended for usage with the transformers library https://github.com/huggingface/transformers (sloberta.2.0.transformers.tar.gz) or fairseq library https://github.com/pytorch/fairseq (sloberta.2.0.fairseq.tar.gz)
  • The CLASSLA-Stanza model for JOS dependency parsing of standard Slovenian 2.0

    This model for JOS dependency parsing of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). The estimated LAS of the parser is ~93.89. The difference to the previous version of the model is that the model was trained using the SUK training corpus and uses the updated embeddings.
  • The CLASSLA-Stanza model for morphosyntactic annotation of non-standard Slovenian 2.1

    This model for morphosyntactic annotation of non-standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and the Janes-Tag corpus (http://hdl.handle.net/11356/1732), using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) that were expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). These corpora were additionally augmented for handling missing diacritics by repeating parts of the corpora with diacritics removed. The model produces simultaneously UPOS, FEATS and XPOS (MULTEXT-East) labels. The estimated F1 of the XPOS annotations is ~92.17. The difference to the previous version of the model is that the model was trained on the SUK training corpus and the 3.0 version of Janes-tag, uses new embeddings and the new version of the Slovene morphological lexicon Sloleks 3.0 (http://hdl.handle.net/11356/1745).
  • The CLASSLA-Stanza model for lemmatisation of standard Slovenian 2.0

    This model for lemmatisation of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). The estimated F1 of the lemma annotations is ~99.11. The difference to the previous version of the model is that the model was trained using the SUK training corpus and uses new embeddings and the new version of the Slovene morphological lexicon Sloleks 3.0 (http://hdl.handle.net/11356/1745).
  • The CLASSLA-Stanza model for morphosyntactic annotation of standard Slovenian 2.0

    This model for morphosyntactic annotation of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) that were expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). The model produces simultaneously UPOS, FEATS and XPOS (MULTEXT-East) labels. The estimated F1 of the XPOS annotations is ~98.27. The difference to the previous version of the model is that the model was trained using the SUK training corpus and uses new embeddings and the new version of the Slovene morphological lexicon Sloleks 3.0 (http://hdl.handle.net/11356/1745).
  • The CLASSLA-Stanza model for UD dependency parsing of standard Slovenian 2.2

    This model for UD dependency parsing of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). The estimated LAS of the parser is ~90.42. The difference to the previous version of the model is that the model was trained using the improved SUK 1.1 version of the training corpus.
  • The CLASSLA-Stanza model for UD dependency parsing of standard Slovenian 2.0

    This model for UD dependency parsing of standard Slovenian was built with the CLASSLA-Stanza tool (https://github.com/clarinsi/classla) by training on the SUK training corpus (http://hdl.handle.net/11356/1747) and using the CLARIN.SI-embed.sl word embeddings (http://hdl.handle.net/11356/1204) expanded with the MaCoCu-sl Slovene web corpus (http://hdl.handle.net/11356/1517). The estimated LAS of the parser is ~91.11. The difference to the previous version of the model is that the model was trained using the SUK training corpus and uses the updated embeddings.
  • Fine-tuned models for extractive question answering in the Slovenian language

    6 different fine-tuned Transformer-based models that solve the downstream task of extractive question answering in the Slovenian language. The fine-tuned models included are: bert-base-cased-squad2-SLO, bert-base-multilingual-cased-squad2-SLO, electra-base-squad2-SLO, roberta-base-squad2-SLO, sloberta-squad2-SLO and xlm-roberta-base-squad2-SLO. The models were trained and evaluated using the Slovene translation of the SQuAD2.0 dataset (https://www.clarin.si/repository/xmlui/handle/11356/1756). The models achieve these metric values: sloberta-squad2-SLO: EM=67.1, F1=73.56 xlm-roberta-base-squad2-SLO: EM=62.52, F1=69.51 bert-base-multilingual-cased-squad2-SLO: EM=61.37, F1=68.1 roberta-base-squad2-SLO: EM=58.23, F1=64.62 bert-base-cased-squad2-SLO: EM=55.12, F1=60.52 electra-base-squad2-SLO: EM=53.69, F1=60.85