Result filters

Metadata provider

Language

  • Croatian
  • Swedish

Resource type

Availability

Active filters:

  • Language: Croatian
  • Language: Swedish
Loading...
10 record(s) found

Search results

  • Universal Dependencies 2.10 models for UDPipe 2 (2022-07-11)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Universal Dependencies 2.15 models for UDPipe 2 (2024-11-21)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 147 treebanks of 78 languages of Universal Depenencies 2.15 Treebanks, created solely using UD 2.15 data (https://hdl.handle.net/11234/1-5787). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_215_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Universal Dependencies 2.12 models for UDPipe 2 (2023-07-17)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 131 treebanks of 72 languages of Universal Depenencies 2.12 Treebanks, created solely using UD 2.12 data (https://hdl.handle.net/11234/1-5150). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_212_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Universal Dependencies 2.4 Models for UDPipe (2019-05-31)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 90 treebanks of 60 languages of Universal Depenencies 2.4 Treebanks, created solely using UD 2.4 data (http://hdl.handle.net/11234/1-2988). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_24_models . To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe . In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.
  • Universal Dependencies 2.6 models for UDPipe 2 (2020-08-31)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 99 treebanks of 63 languages of Universal Depenencies 2.6 Treebanks, created solely using UD 2.6 data (https://hdl.handle.net/11234/1-3226). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_26_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Universal Dependencies 2.5 Models for UDPipe (2019-12-06)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 94 treebanks of 61 languages of Universal Depenencies 2.5 Treebanks, created solely using UD 2.5 data (http://hdl.handle.net/11234/1-3105). The model documentation including performance can be found at http://ufal.mff.cuni.cz/udpipe/models#universal_dependencies_25_models . To use these models, you need UDPipe binary version at least 1.2, which you can download from http://ufal.mff.cuni.cz/udpipe . In addition to models itself, all additional data and value of hyperparameters used for training are available in the second archive, allowing reproducible training.
  • UDPipe

    UDPipe is an trainable pipeline for tokenization, tagging, lemmatization and dependency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained given only annotated data in CoNLL-U format. Trained models are provided for nearly all UD treebanks.
  • Slavic Forest, Norwegian Wood (scripts)

    Tools and scripts used to create the cross-lingual parsing models submitted to VarDial 2017 shared task (https://bitbucket.org/hy-crossNLP/vardial2017), as described in the linked paper. The trained UDPipe models themselves are published in a separate submission (https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1971). For each source (SS, e.g. sl) and target (TT, e.g. hr) language, you need to add the following into this directory: - treebanks (Universal Dependencies v1.4): SS-ud-train.conllu TT-ud-predPoS-dev.conllu - parallel data (OpenSubtitles from Opus): OpenSubtitles2016.SS-TT.SS OpenSubtitles2016.SS-TT.TT !!! If they are originally called ...TT-SS... instead of ...SS-TT..., you need to symlink them (or move, or copy) !!! - target tagging model TT.tagger.udpipe All of these can be obtained from https://bitbucket.org/hy-crossNLP/vardial2017 You also need to have: - Bash - Perl 5 - Python 3 - word2vec (https://code.google.com/archive/p/word2vec/); we used rev 41 from 15th Sep 2014 - udpipe (https://github.com/ufal/udpipe); we used commit 3e65d69 from 3rd Jan 2017 - Treex (https://github.com/ufal/treex); we used commit d27ee8a from 21st Dec 2016 The most basic setup is the sl-hr one (train_sl-hr.sh): - normalization of deprels - 1:1 word-alignment of parallel data with Monolingual Greedy Aligner - simple word-by-word translation of source treebank - pre-training of target word embeddings - simplification of morpho feats (use only Case) - and finally, training and evaluating the parser Both da+sv-no (train_ds-no.sh) and cs-sk (train_cs-sk.sh) add some cross-tagging, which seems to be useful only in specific cases (see paper for details). Moreover, cs-sk also adds more morpho features, selecting those that seem to be very often shared in parallel data. The whole pipeline takes tens of hours to run, and uses several GB of RAM, so make sure to use a powerful computer.
  • ELMo embeddings models for seven languages

    ELMo language model (https://github.com/allenai/bilm-tf) used to produce contextual word embeddings, trained on large monolingual corpora for 7 languages: Slovenian, Croatian, Finnish, Estonian, Latvian, Lithuanian and Swedish. Each language's model was trained for approximately 10 epochs. Corpora sizes used in training range from over 270 M tokens in Latvian to almost 2 B tokens in Croatian. About 1 million most common tokens were provided as vocabulary during the training for each language model. The model can also infer OOV words, since the neural network input is on the character level. Each model is in its own .tar.gz archive, consisting of two files: pytorch weights (.hdf5) and options (.json). Both are needed for model inference, using allennlp (https://github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md) python library.