Result filters

Metadata provider

Language

Resource type

Availability

  • Attribution

Active filters:

  • Availability: Attribution
  • Language: German
Loading...
15 record(s) found

Search results

  • PICCL: Philosophical Integrator of Computational and Corpus Libraries

    PICCL is a set of workflows for corpus building through OCR, post-correction, modernization of historic language and Natural Language Processing. It combines Tesseract Optical Character Recognition, TICCL functionality and Frog functionality in a single pipeline. Tesseract offers Open Source software for optical character recognition. TICCL (Text Induced Corpus Clean-up) is a system that is designed to search a corpus for all existing variants of (potentially) all words occurring in the corpus. This corpus can be one text, or several, in one or more directories, located on one or more machines. TICCL creates word frequency lists, listing for each word type how often the word occurs in the corpus. These frequencies of the normalized word forms are the sum of the frequencies of the actual word forms found in the corpus. TICCL is a system that is intended to detect and correct typographical errors (misprints) and OCR errors (optical character recognition) in texts. When books or other texts are scanned from paper by a machine, that then turns these scans, i.e. images, into digital text files, errors occur. For instance, the letter combination `in' can be read as `m', and so the word `regeering' is incorrectly reproduced as `regeermg'. TICCL can be used to detect these errors and to suggest a correct form. Frog enriches textual documents with various linguistic annotations.
    Martin Reynaert, Maarten van Gompel, Ko van der Sloot and Antal van den Bosch. 2015. PICCL: Philosophical Integrator of Computational and Corpus Libraries. Proceedings of CLARIN Annual Conference 2015, pp. 75-79. Wrocław, Poland. http://www.nederlab.nl/cms/wp-content/uploads/2015/10/Reynaert_PICCL-Philosophical-Integrator-of-Computational-and-Corpus-Libraries.pdf
    PICCL
  • Ucto Tokeniser

    Ucto tokenizes text files: it separates words from punctuation, and splits sentences. This is one of the first tasks for almost any Natural Language Processing application. Ucto offers several other basic preprocessing steps such as changing case that you can all use to make your text suited for further processing such as indexing, part-of-speech tagging, or machine translation. The tokeniser engine is language independent. By supplying language-specific tokenisation rules in an external configuration file a tokeniser can be created for a specific language. Ucto comes with tokenization rules for English, Dutch, French, Italian, and Swedish; it is easily extendible to other languages. It recognizes dates, times, units, currencies, abbreviations. It recognizes paired quote spans, sentences, and paragraphs. It produces UTF8 encoding and NFC output normalization, optionally accepts other encodings as input. Optional conversion to all lowercase or uppercase. Ucto supports FoLiA XML.
    Ucto
  • Universal Dependencies 2.10 models for UDPipe 2 (2022-07-11)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Lingua::Interset 2.026

    Lingua::Interset is a universal morphosyntactic feature set to which all tagsets of all corpora/languages can be mapped. Version 2.026 covers 37 different tagsets of 21 languages. Limited support of the older drivers for other languages (which are not included in this package but are available for download elsewhere) is also available; these will be fully ported to Interset 2 in future. Interset is implemented as Perl libraries. It is also available via CPAN.
  • Universal Dependencies 2.15 models for UDPipe 2 (2024-11-21)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 147 treebanks of 78 languages of Universal Depenencies 2.15 Treebanks, created solely using UD 2.15 data (https://hdl.handle.net/11234/1-5787). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_215_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • CorPipe 23 multilingual CorefUD 1.2 model (corpipe23-corefud1.2-240906)

    The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license. The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/. This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.
  • Universal Dependencies 2.12 models for UDPipe 2 (2023-07-17)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 131 treebanks of 72 languages of Universal Depenencies 2.12 Treebanks, created solely using UD 2.12 data (https://hdl.handle.net/11234/1-5150). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_212_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Translation Models (en-de) (v1.0)

    En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2020 (BLEU): en->de: 25.9 de->en: 33.4 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • MCSQ Translation Models (en-de) (v1.0)

    En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip). Their main use should be in-domain translation of social surveys. Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on MCSQ test set (BLEU): en->de: 67.5 (train: genuine in-domain MCSQ data only) de->en: 75.0 (train: additional in-domain backtranslated MCSQ data) (Evaluated using multeval: https://github.com/jhclark/multeval)