Result filters

Metadata provider

Resource type

Tool task

Availability

  • Attribution

Keywords

  • neural machine translation

Active filters:

  • Availability: Attribution
  • Keywords: neural machine translation
Loading...
15 record(s) found

Search results

  • Tensor2tensor Translation for Docker

    This submission contains Dockerfile for creating a Docker image with compiled Tensor2tensor backend with compatible (TensorFlow Serving) models available in the Lindat Translation service (https://lindat.mff.cuni.cz/services/transformer/). Additionally, the submission contains a web frontend for simple in-browser access to the dockerized backend service. Tensor2Tensor (https://github.com/tensorflow/tensor2tensor) is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.
  • CUBBITT Translation Models (en-fr) (v1.0)

    CUBBITT En-Fr translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2014 (BLEU): en->fr: 38.2 fr->en: 36.7 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • Semi-supervised Icelandic-Polish Translation System (22.09)

    This Icelandic-Polish translation model (bi-directional) was trained using fairseq (https://github.com/facebookresearch/fairseq) by means of semi-supervised translation by starting with the mBART50 model. The model was then trained using a multi-task curriculum to first learn to denoise sentences. Then the model was trained to translate using aligned parallel texts. Finally the model was provided with monolingual texts in both Icelandic and Polish with which it iteratively creates back-translations. For the PL-IS direction the model achieves a BLEU score of 27.60 on held out true parallel training data and 15.30 on the out-of-domain Flores devset. For the IS-PL direction the model achieves a score of 27.70 on the true data and 13.30 on the Flores devset. -- Þetta íslensk-pólska þýðingarlíkan (tvíátta) var þjálfað með fairseq (https://github.com/facebookresearch/fairseq) með hálf-sjálfvirkum aðferðum frá mBART50 líkaninu. Líkanið var þjálfað á þremur verkefnum, afruglun, samhliða þýðingum og bakþýðingum sem voru myndaðar á þjálfunartíma. Fyrir PL-IS áttina fæst BLEU skor 27.60 á raun gögnum sem voru tekin til hliðar og 15.30 á Flores þróunargögnunum. Fyrir IS-PL áttina fæst skor 27.70 á raun gögnunum og 13.30 á Flores þróunargögnunum.
  • CUBBITT Translation Models (en-cs) (v1.0)

    CUBBITT En-Cs translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2014 (BLEU): en->cs: 27.6 cs->en: 34.4 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • CUBBITT Translation Models (en-pl) (v1.0)

    CUBBITT En-Pl translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2020 (BLEU): en->pl: 12.3 pl->en: 20.0 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • GreynirTranslate - mBART25 NMT (with layer drop) models for Translations between Icelandic and English (1.0)

    These are the models in http://hdl.handle.net/20.500.12537/125 trained with 40% layer drop. They are suitable for inference using every other layer for optimized inference speed with lower translation performance. We refer to the prior submission for usage and the documentation on layerdrop at https://github.com/pytorch/fairseq/blob/fcca32258c8e8bcc9f9890bf4714fa2f96b6b3e1/examples/layerdrop/README.md. Þessi líkön eru þjálfuð með 40% laga missi (e. layer drop) á líkönunum í http://hdl.handle.net/20.500.12537/125. Þau henta vel til þýðinga þar sem er búið að henda öðru hverju lagi í netinu og þannig er hægt að hraða á þýðingum á kostnað gæða. Leiðbeiningar um notkun netanna er að finna með upphaflegu líkönunum og í notkunarleiðbeiningum Fairseq í https://github.com/pytorch/fairseq/blob/fcca32258c8e8bcc9f9890bf4714fa2f96b6b3e1/examples/layerdrop/README.md.
  • Translation Models (en-de) (v1.0)

    En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2020 (BLEU): en->de: 25.9 de->en: 33.4 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • MCSQ Translation Models (en-de) (v1.0)

    En-De translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). The models were trained using the MCSQ social surveys dataset (available at https://repo.clarino.uib.no/xmlui/bitstream/handle/11509/142/mcsq_v3.zip). Their main use should be in-domain translation of social surveys. Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on MCSQ test set (BLEU): en->de: 67.5 (train: genuine in-domain MCSQ data only) de->en: 75.0 (train: additional in-domain backtranslated MCSQ data) (Evaluated using multeval: https://github.com/jhclark/multeval)