Result filters

Metadata provider

  • DSpace

Language

  • English

Resource type

Availability

Active filters:

  • Language: English
  • Metadata provider: DSpace
Loading...
70 record(s) found

Search results

  • WiKNN Text Classifier

    WiKNN is an online text classifier service for Polish and English texts. It supports hierarchical labelled classification of user-submitted texts with Wikipedia categories. WiKNN is available through a web-based interface (http://pelcra.clarin-pl.eu/tools/classifier/) and as a REST service with interactive documentation available at http://clarin.pelcra.pl/apidocs/wiknn.
  • Czech image captioning, machine translation, and sentiment analysis (Neural Monkey models)

    This submission contains trained end-to-end models for the Neural Monkey toolkit for Czech and English, solving three NLP tasks: machine translation, image captioning, and sentiment analysis. The models are trained on standard datasets and achieve state-of-the-art or near state-of-the-art performance in the tasks. The models are described in the accompanying paper. The same models can also be invoked via the online demo: https://ufal.mff.cuni.cz/grants/lsd There are several separate ZIP archives here, each containing one model solving one of the tasks for one language. To use a model, you first need to install Neural Monkey: https://github.com/ufal/neuralmonkey To ensure correct functioning of the model, please use the exact version of Neural Monkey specified by the commit hash stored in the 'git_commit' file in the model directory. Each model directory contains a 'run.ini' Neural Monkey configuration file, to be used to run the model. See the Neural Monkey documentation to learn how to do that (you may need to update some paths to correspond to your filesystem organization). The 'experiment.ini' file, which was used to train the model, is also included. Then there are files containing the model itself, files containing the input and output vocabularies, etc. For the sentiment analyzers, you should tokenize your input data using the Moses tokenizer: https://pypi.org/project/mosestokenizer/ For the machine translation, you do not need to tokenize the data, as this is done by the model. For image captioning, you need to: - download a trained ResNet: http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz - clone the git repository with TensorFlow models: https://github.com/tensorflow/models - preprocess the input images with the Neural Monkey 'scripts/imagenet_features.py' script (https://github.com/ufal/neuralmonkey/blob/master/scripts/imagenet_features.py) -- you need to specify the path to ResNet and to the TensorFlow models to this script Feel free to contact the authors of this submission in case you run into problems!
  • DigiLing e-Learning Hub: e-Courses for Digital Linguistics

    The files represent exported e-learning resources created within the DigiLing project, www.digiling.eu. We have identified seven core subjects in Digital Linguistics and built seven corresponding courses: - Introduction to Text Processing and Analysis - Introduction to Python for Linguists - Computational Lexicology and Lexicography - Localization Tools and Workflows - Post-Editing Machine Translation - Mining and Managing Multilingual Terminology - Variability of Languages in Time and Space The data format is .mbz, a compressed archive compatible with any e-learning environment running Moodle.
  • CUBBITT Translation Models (en-fr) (v1.0)

    CUBBITT En-Fr translation models, exported via TensorFlow Serving, available in the Lindat translation service (https://lindat.mff.cuni.cz/services/translation/). Models are compatible with Tensor2tensor version 1.6.6. For details about the model training (data, model hyper-parameters), please contact the archive maintainer. Evaluation on newstest2014 (BLEU): en->fr: 38.2 fr->en: 36.7 (Evaluated using multeval: https://github.com/jhclark/multeval)
  • Universal Dependencies 2.10 models for UDPipe 2 (2022-07-11)

    Tokenizer, POS Tagger, Lemmatizer and Parser models for 123 treebanks of 69 languages of Universal Depenencies 2.10 Treebanks, created solely using UD 2.10 data (https://hdl.handle.net/11234/1-4758). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#universal_dependencies_210_models . To use these models, you need UDPipe version 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
  • Multilingual text genre classification model X-GENRE

    The X-GENRE classifier is a text classification model that can be used for automatic genre identification. The model classifies texts to one of 9 genre labels: Information/Explanation, News, Instruction, Opinion/Argumentation, Forum, Prose/Lyrical, Legal, Promotion and Other (refer to the provided README file for the details on the labels). The model was shown to provide high classification performance on Albanian, Catalan, Croatian, Greek, English, Icelandic, Macedonian, Slovenian, Turkish and Ukrainian, and the zero-shot cross-lingual experiments indicate that it will likely provide comparable performance on all other languages that are supported by the XLM-RoBERTa model (see Appendix in the following paper for the list of covered languages: https://arxiv.org/abs/1911.02116). The model is based on the base-sized XLM-RoBERTa model (https://huggingface.co/FacebookAI/xlm-roberta-base). It was fine-tuned on the training split of an English-Slovenian X-GENRE dataset (http://hdl.handle.net/11356/1960), comprising of around 1,800 instances of Slovenian and English texts. Fine-tuning was performed with the simpletransformers library (https://simpletransformers.ai/) and the following hyperparameters were used: Train batch size: 8 Learning rate: 1e-5 Max. sequence length: 512 Number of epochs: 15 For the optimum performance, the genre classifier should be applied to documents of sufficient length (the rule of thumb is at least 75 words), the predictions of label "Other" should be disregarded, and only predictions, predicted with confidence higher than 0.8, should be used. With these post-processing steps, the model was shown to reach macro-F1 scores of 0.92 and 0.94 on English and Slovenian test sets respectively (cross-dataset scenario), macro-F1 scores between 0.88 and 0.95 on Croatian, Macedonian, Turkish and Ukrainian, and macro-F1 scores between 0.80 and 0.85 on Albanian, Catalan, Greek, and Icelandic (zero-shot cross-lingual scenario). Refer to the provided README file for instructions with code examples on how to use the model.
  • Long Context Translation Models for English-Icelandic translations (22.09)

    ENGLISH: These models are capable of translating between English and Icelandic, in both directions. They are capable of translating several sentences at once and are robust to some input errors such as spelling errors. The models are based on the pretrained mBART25 model (http://hdl.handle.net/20.500.12537/125, https://arxiv.org/abs/2001.08210) and finetuned on bilingual EN-IS data and backtranslated data (including http://hdl.handle.net/20.500.12537/260). The full backtranslation data used includes texts from the following sources: The Icelandic Gigaword Corpus (Without sport) (IGC), The Icelandic Common Crawl Corpus (IC3), Student theses (skemman.is), Greynir News, Wikipedia, Icelandic sagas, Icelandic e-books, Books3, NewsCrawl, Wikipedia, EuroPARL, Reykjavik Grapevine, Iceland Review. The true parallel long context data used is from European Economic Area (EEA) regulations, document-level Icelandic Student Theses Abstracts corpus (IPAC), Stúdentablaðið (university student magazine), The report of the Special Investigation Commision (Rannsóknarnefnd Alþingis), The Bible and Jehovah’s witnesses corpus (JW300). Provided here are model files, a SentencePiece subword-tokenizing model and dictionary files for running the model locally along with scripts for translating sentences on the command line. We refer to the included README for instructions on running inference. ÍSLENSKA: Þessi líkön geta þýtt á milli ensku og íslensku. Líkönin geta þýtt margar málsgreinar í einu og eru þolin gagnvart villum og smávægilegu fráviki í inntaki. Líkönin eru áframþjálfuð þýðingarlíkön sem voru þjálfuð frá mBART25 líkaninu (http://hdl.handle.net/20.500.12537/125, https://arxiv.org/abs/2001.08210). Þjálfunargögin eru samhlíða ensk-íslensk gögn ásamt bakþýðingum (m.a. http://hdl.handle.net/20.500.12537/260). Einmála gögn sem voru bakþýdd og nýtt í þjálfanir eru fengin úr: Risamálheildinni (án íþróttafrétta), Icelandic Common Crawl Corpus (IC3), ritgerðum af skemman.is, fréttum í fréttagrunni Greynis, Wikipedia, íslendingasögurnar, opnar íslenskar rafbækur, Books3, NewsCrawl, Wikipedia, EuroPARL, Reykjavik Grapevine, Iceland Review. Samhliða raungögn eru fengin upp úr European Economic Area (EEA) reglugerðum, samröðuðum útdráttum úr ritgerðum nemenda (IPAC), Stúdentablaðið, Skýrsla Rannsóknarnefndar Alþingis, Biblíunni og samhliða málheild unna úr Varðturninum (JW300). Útgefin eru líkönin sjálf, orðflísunarlíkan og orðabók fyrir flísunina, ásamt skriptum til að keyra þýðingar frá skipanalínu. Nánari leiðbeiningar eru í README skjalinu.
  • Lingua::Interset 2.026

    Lingua::Interset is a universal morphosyntactic feature set to which all tagsets of all corpora/languages can be mapped. Version 2.026 covers 37 different tagsets of 21 languages. Limited support of the older drivers for other languages (which are not included in this package but are available for download elsewhere) is also available; these will be fully ported to Interset 2 in future. Interset is implemented as Perl libraries. It is also available via CPAN.
  • RÚV-DI Speaker Diarization (21.10)

    These are a set of speaker diarization recipes which depend on the speech toolkit Kaldi. There are two types of recipes here. First are recipes used for decoding unseen audio. The second type of recipes are for training diarization models on the Rúv-di data. This tool also lists the DER for the Rúv-di dataset on most of the recipes. All DERs within this tool have no unscored collars and include overlapping speech Þessi pakki inniheldur forskriftir fyrir samræðugreind fyrir hugbúnaðarumhverfið Kaldi. Pakkinn inniheldur tvær tegundir af forskriftum. Annars vegar forskriftir sem greina samræður í nýjum hljóðskrám og hins vegar forskriftir til að þjálfa ný samræðugreindarlíkön með Rúv-di-gagnasafninu. Hluti forskriftanna innihalda villutíðni (DER) fyrir Rúv-di-gagnasettið.
  • KER - Keyword Extractor

    KER is a keyword extractor that was designed for scanned texts in Czech and English. It is based on the standard tf-idf algorithm with the idf tables trained on texts from Wikipedia. To deal with the data sparsity, texts are preprocessed by Morphodita: morphological dictionary and tagger.